Kink solutions for the Newell–Whitehead–Segel equation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical solutions for the fractional Fisher's equation

In this paper, we consider the inhomogeneous time-fractional nonlinear Fisher equation with three known boundary conditions. We first apply a modified Homotopy perturbation method for translating the proposed problem to a set of linear problems. Then we use the separation variables  method to solve obtained problems. In examples, we illustrate that by right choice of source term in the modified...

متن کامل

q-DEFORMED KINK SOLUTIONS

The q-deformed kink of the λφ4−model is obtained via the normalisable ground state eigenfunction of a fluctuation operator associated with the qdeformed hyberbolic functions. The kink mass, the bosonic zero-mode and the q-deformed potential in 1+1 dimensions are found. PACS numbers: 11.30.Pb, 03.65.Fd, 11.10.Ef ∗Permanent address: Departamento de Ciências Exatas e da Natureza, Universidade Fede...

متن کامل

Analytical solutions for the fractional Klein-Gordon equation

In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.

متن کامل

A note on "New kink-shaped solutions and periodic wave solutions for the (2 + 1)-dimensional Sine-Gordon equation"

Exact solutions of the Nizhnik-Novikov-Veselov equation by Li [New kink-shaped solutions and periodic wave solutions for the (2+1)-dimensional Sine-Gordon equation, Appl. Math. Comput. 215 (2009). 3777-3781 ] are analyzed. We have observed that fourteen solutions by Li from thirty do not satisfy the equation. The other sixteen exact solutions by Li can be found from the general solutions of the...

متن کامل

Solutions of diffusion equation for point defects

An analytical solution of the equation describing diffusion of intrinsic point defects in semiconductor crystals has been obtained for a one-dimensional finite-length domain with the Robin-type boundary conditions. The distributions of point defects for different migration lengths of defects have been calculated. The exact analytical solution was used to verify the approximate numerical solutio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physical Studies

سال: 2019

ISSN: 1027-4642,2310-0052

DOI: 10.30970/jps.23.3001